
www.manaraa.com

NPS52--86-014

NAVAL POSTGRADUATE SCHOOL

Monterey, California

A Unified Interface Method

for Interacting with a Database

C. Thomas Wu
ff

January 1986

FedDocs
D 208.14/2
NPS-52-86-014

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker D. Ac Schrady

Superintendent Provost

The work reported herein was supported by Contract from the

Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

VINCENT Y. LUM
.

KNEALE T. MARSHALL ^

Chairman ' Dean of Information and
Department of Computer Science Policy Science

www.manaraa.com

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA iE (Whan D mi m Entered)

DUDLE X LIBRARY
3RADUAT5E S

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS52-86-014
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A UNIFIED INTERFACE METHOD
FOR INTERACTING WITH A DATABASE

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

C. Thomas Wu

8. CONTRACT OR GRANT NUMBERS

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5000

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

61152N; RR000-01
N0001486WR4E001

11. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

12. REPORT DATE

January 1986
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME 4 ADDRESS^// dltlerent Irom Controlling Ottice) 15 SECURITY CLASS, (of thf report)

ISa DECLASSIFICATION- DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 20, If dltlerent Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide II neceaaary and Identity by block number)

20. ABSTRACT (Continue on reveraa aide It neceaaary and Identity by block number)

A graphics user interface called GLAD (Graphics Language for Database) is

proposed as a unified interface method for a user interaction with a database.
GLAD provides a coherent interaction method for all three user interactions
with a database: data definition interaction, data manipulation interaction,
and program development interaction. In this paper, the features of data
manipulation interaction of GLAD are described. Specifically, the method of

I

representing and manipulating generalized/specialized objects and recursively
related objects is presented, and the notion of program box (see attached)

DD | jan
M
73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF-014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntarad)

www.manaraa.com

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

which is used for specifying a complex query is introduced

S'N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGEfWh«n Data Entmtad)

www.manaraa.com

A Unified Interface Method

for Interacting with a Database

by

C. T. Wu

Naval Postgraduate School
Department of Computer Science

Monterey, Ca 93943 USA

The research is partly funded by the Naval Postgraduate School Research Foundation Program.

www.manaraa.com

www.manaraa.com

DUDLEY KUOX LIBRARYKSf^^ SCHOOL
M0NTfc^Y CA 93943-5101

Abstract

A graphics user interface called GLAD (Graphics LAnguage for Database) is

proposed as a unified interface method for a user interaction with a database. GLAD

provides a coherent interaction method for all three user interactions with a database:

data definition interaction, data manipulation interaction, and program development

interaction. In this paper, the features of data manipulation interaction of GLAD are

described. Specifically, the method of representing and manipulating

generalized/specialized objects and recursively related objects is presented, and the

notion of program box which is used for specifying a complex query is introduced.

www.manaraa.com

www.manaraa.com

1. Introduction

To attain a wider acceptance and usage, a database management system must

accommodate more different types of users. These users range from very sophisticated

users, such as database administrators and system designers, to naive users, such as

secretaries, clerks, and other non-technical users of database. In this paper, we describe

a graphical user interface that accommodates both sophisticated and naive users.

Users of a database management system interact with a database in three different

ways. The first is the creation of database via a data definition language. The second

is the accessing (i.e. retrieval and update of information) of database via a data

manipulation language. And the last is the development of application programs via an

embedded host language (i.e. a regular programming language embedded with a data

manipulation language). We call these three different user interactions, respectively,

data definition interaction, data manipulation interaction and program development

interaction. In a relational database management system INGRES, for example, a query

language called QUEL is provided for data manipulation and definition, and an

embedded query language called EQUEL/C is provided for developing application

programs. To utilize these specialized languages successfully, users must be well versed

in computer programming concepts.

In a traditional data processing application of database management system, naive

users' interation with a database is usually limited to the accessing of database; thus, the

previoulsy proposed "user-friendly" interfaces are concentrated on the data manipulation

interaction. A "canned" menu-driven query system, where each choice in the menu is a

specific query such as "list all customers with outstanding balance," is a common user

interface employed for accessing a database. Problems with the canned menu-driven

'By creation of database, we mean the definition of database schema and not the actual loading of data into the database.

www.manaraa.com

query system are that it can only be used by naive users (it is too tedious for

sophisticated users) and that it has very limited querying capability (users can only ask

what the menu provides).

New proposals for a better data manipulation interface can be classified into three

different approaches: a natural language interface, a modified query language interface,

and a graphics interface. A natural language interface [BOGU84, CODD74, HEND77,

WALTS78] is primarily developed for naive users, and therefore, it may not be suitable

for more sophisticated users. Pros and cons for using a natural language interface as a

database access method are presented in [PETR76]. The second approach, a modified

query language interface [KORT84, MACG85], employs a similar syntax as a regular

query language but with more simplified syntax and enriched semantic. It is intended

for both sophisticated and naive users. The third approach, a graphics interface

[HERO80, LARS84, MCD074, STON82, SUGI84, WONG82, WU85, ZL0077], uses

graphic objects as a tool for accessing database. This approach is also intended for both

types of users.

As a better interface for program development interaction, so called Fourth

Generation Languages are proposed. These commercial products are advertised as so

easy to use that non-technical managers can develop their own application programs by

themselves. Although we feel that these Fourth Generation Languages are in general

easier to use than embedded host languages, we view these advertisers" claims more of a

sales gimmick. A much better approach called fill- in- the-form programming for an

application program development is reported in [ROWE85]. With this approach, a user

develops a complete application by interactively composing a collection of frames, which

consists of forms to display/enter data and a menu of operations.

www.manaraa.com

Expressing the conceptual schema of database, once it is designed, in a data

definition language is the easiest of all three interactions. And therefore, not much effort

has been done to build a good interface for data definition interaction. However, we feel

that just providing a syntactic mean to express the conceptual schema of database is not

enough. A good user interface for data definition interaction, we believe, should aid

users in the design process. GAMBIT [BRAG84] is one such interactive user interface:

however, it is intended primarily for database adm listrators and not for naive users.

A database management system must provide a good user interface for all three

interactions to make the system easy to use and learn for both sophisticated and naive

users. We should note that simply combining some of the aforementioned proposals is

not acceptable, because users must learn three different interaction methods to utilize the

database management system. We believe that a single, coherent interation method

must be provided for all three interactions in order to gain an acceptance and to increase

a usage of database management system by a wider audience.

We believe a graphical interface has the best potential in developing such single,

coherent interaction method applicable to all three interactions, and thus, we propose a

graphical interface GLAD (Graphics LAnguage for Database). GLAD has two major

advantages. First, it provides a single environment where different techniques proposed

for different purposes can be integrated. Specifically, in GLAD, techniques proposed in

QBE. GUIDE, TIMBER, G-WHIZ, etc are all integrated into a single working whole.

Rather than re-inventing a wheel, we provide a framework where different, previously

proposed techniques are integrated into one unit, which we believe is a much better

approach. Second, GLAD maintains a high degree of data independence. GLAD is not

tied to any specific implementation and therefore, it can serve as a front-end to relational

or network DBMS. And it is also possible to have a specialized implementation for

www.manaraa.com

GLAD. Since GLAD can be attached to relational or network DBMS, many existing

databases can become available (by having GLAD front-end) to all users who learn

GLAD.

A major contribution of GLAD to a user interface research is its single, unified

interface method for all three interactions. By providing a coherent interface method,

GLAD achieves a high degree of ease of learning and using. To our knowledge, there is

no other proposal that addresses the issue of a unified interface method for all three user

interactions. Specific contributions of this paper are the presentation of simple graphical

representations for different types of generalized/specialized and recursively related

objects and the introduction of program box concept. GLAD is the first graphical

interface that can represent these objects and allow users to manipulate them in a simple

fashion.

The paper is organized as follows. The characteristics of a good user interface for

data manipulation and an overall description of a data manipulation interaction via

GLAD are given in the next section. Section 3 illustrates a data manipulation interaction

via GLAD by going through a sample session. Section 4 and 5 discuss the representation

and manipulation of generalized/specialized objects and recursively related objects,

respectively. Section 6 introduces the notion of program box which is used as an aid in

formulating complex queries. And finally, Section 7 concludes the paper.

2. Data Manipulation Via GLAD

A good user interface for data manipulation interaction capable of supporting both

sophisticated and naive users must have the following characteristics:

(1) It must be descriptive. It must show what kinds of data (employee, department,

equipment, etc) are stored in the database and how they are related to each other.

www.manaraa.com

We call such representation of data and their rela ionships database schema. Also,

it should provide a help (i.e. describe more about the database) if requested by

users.

(2) It must be powerful. Users must be able to express a complex query by using it.

(3) It must be easy to learn. Naive and uninitiated users should be able to master the

interaction method quickly and start accessing the database with a short learning

period.

(4) It must be easy to use. It must be easy to use so users rarely make erroneous

queries and can formulate complex queries simply and quickly. Also, users should

be able to specify a query in different ways; they should not be forced to remember

a particular way to pose a query.

Query languages of currently available database management systems lack in all

characteristics but (2).

A review of previously proposed graphics user interfaces [HERO80, LARS84,

MCD074, STON82, SUGI84, WONG82, ZL0077] by using the criteria listed above as a

yardstick is given in [WU85]. We shall simply note here that none of them attains all

four characteristics satisfactorily. A graphics user interface for data manipulation

interaction that we describe here can be viewed as a synthesis of previoulsy proposed

graphics user interfaces. By incorporating their good features and eliminating their weak

points, we believe that GLAD has achieved a higher degree of descriptivenes, ease of

learning and using, and power.

For ease of reference, we shall call the part of GLAD that deals with the data

manipulation interaction GLAD DMC (Data Manipulation Component). In the

following, we describe the salient features of GLAD DMC. These features are

categorized into four characteristics mentioned above.

www.manaraa.com

2.1. GLAD DMC is descriptive

GLAD DMC displays a diagram of the database schema. This GLAD diagram is

semantically rich, which means that it is capable of capturing a real world semantics

(how the information stored in the database are related to each other) naturally and

precisely. Conventional data models, such as relational, network, and hierarchical data

models are semantically poor compared to new data models, such as SDM, TAXIS, E/R,

etc. A GLAD diagram is applicable to many semantic data models , because it provides

an elegant diagrammatic representation of real world abstraction concepts those

semantic data models employ. The abstraction concepts we are dealing with here are:

aggregation, generalization, and classification. In the following, we discuss each of them

and show how each is represented in a GLAD diagram.

Aggregation:

An object
3

is an aggregation of (sub)objects. For example, a student object could

be an aggregation of name, address, ssno. gpa, and dept (sub)objects. An aggregate

object is represented as a rectangle in a GLAD diagram, see Figure 2.1a. A user can see

the sub(objects) of an aggregate object by expanding it, see Figure 2.1b. Notice that the

dept object is not shown in Figure 2.1b because it is not an atomic object. Only first

four objects are atomic; that is, they are an aggregation of exactly one system-defined or

a user-defined base object (string, number, enumeration, subrange and boolean). Since

the dept object is an non-atomic aggregate object, say, an aggregation of name, set of

students, set of courses, and school, it was not shown in Figure 2.1b. Each non-atomic

object in the database is displayed
4

. and an association between objects is represented as

a line between these objects, see Figure 2.1c. Notice that the dept object is shown as a

'Although we feel that a GLAD diagram is applicable to almost all semantic models, there may be some data models that we
are unaware of or do not fully understand. Therefore, we shall refrain ourselves from making such claim until further study is made.

3We do not define the term object here; we intuitively view an object as a "thing" (both tangible and intangible) that exists.

A database designer can modify it so a non-atomic object is not displayed.

6

www.manaraa.com

separate rectangle. Notice also that an association is not labelled. We discuss the issue

of labelling an association in Section 5.

Generalization:

Individual objects, such as faculty, secretary, and technician, can be grouped

together to form a generalized object, say, employee. Faculty, secretary, and technician

objects are called specialized objects of employee. Generalization abstraction can be

characterized as an IS-A relationship (faculty IS-A emloyee, etc.).

A generalized object is represented in a GLAD diagram as a nested rectangle, see

Figure 2.2a. A user can expand the nested rectangle and view the specialized objects, see

Figure 2.2b. These specialized objects can themselves be the generalized objects of yet

further specialized objects. A faculty object, for example, can be a generalized object of

full, associate, and assistant professors. Graphical representations of different types of

generalized/specialized objects are given in the next section.

We have already mentioned in the previous subsection that an association between

objects is represented as a solid line in a GLAD diagram. When one or both of the

associated objects are specialized objects, a dotted line is used. Figure 2.3 shows how the

dotted lines are used in a GLAD diagram.

An aggregate object can have a disjunctive association, which means that an object

can have either one (sub)object or another. We use a small circle to show a disjunctive

association. Figure 2.4 says that an equipment can belong either to a department or to a

school.

Classification:

Each data item stored in a database is information aborit some object. For

example, data item [bruce Springsteen, n. j., 123-45-6789. 3.2, music] is an information

www.manaraa.com

about student, and it is classified as a student object. We call each data item of an

object a member of that object.

2.2. GLAD DMC is easy to learn

The number of concepts a user has to learn in order to access a database via GLAD

DMC is few, and the interaction method is consistent throughout the interface. Circle,

regular and nested rectangles , and solid and dotted lines are the only concepts that a

user need learn to understand the GLAD diagrams. Morever, the HELP and

DESCRIBE commands are always available to a user. The interaction method is also

very straightforward. A user will select the operation by first moving the mouse to the

desired operation and then clicking the mouse button. A user can also select the

operation by pressing the corresponding function key or by typing the operation name.

After selecting a desired operation, a user must select an argument (s) (by moving the

mouse to the desired argument and clicking the mouse button) that the chosen operation

will be executed on. For example, a user will first select an operation LIST MEMBER

and then select an argument subject to list all subject matters stored in the database.

The result is shown in Figure 2.5. The complete result cannot fit into a window and

therefore, only seven subject matters are displayed in the window. A user can browse

the data by moving the small square vertically or by positioning the mouse at the arrow

and pressing the mouse button. In GLAD DMC. a user may reverse the sequence of

interaction, that is, a user selects argument(s) first and then selects the operation. This

flexibility helps users learn the interaction method easily.

For more complex retrieval operations, a QBE-like interface is used. The notable

difference between ours and the original QBE is that ours does not need the use of

variables for queries involving more than one objects (relations in the original QBE).

The third type, repeated rectangle, is used to represent a recursively related ojbects.

8

www.manaraa.com

The results of various psychological studies that demonstrate QBE's ease of learning and

using are well documented in [THOM75]. By avoiding the use of variables and by

displaying the database schema, we believe ours is easier to learn and use.

2.3. GLAD DMC is powerful

GLAD DMC's power to express a complex query is a direct consequence of adopting

a QBE-like interface for specifying a query. QBE is relationally complete, which

guarantees that it is capable of expressing any query that can be expressed in relational

algrebra or relational calculus. This relational completeness is a general criteria used to

prove the expressive power of a query language. Because GLAD DMC has inherited all

the querying capabilities of QBE, GLAD DMC is also relationally complete.

2.4. GLAD DMC is easy to use

GLAD DMC's flexibility of allowing a user to formulate a query in different ways

and in incremental, piece-by-piece fashion makes it easy to use. By allowing a user to

pose a query in different ways, it appeals to the wider range of users. If there is only one

way to pose a query, it probably would not appeal to all users, because the allowed query

specification may be too difficult to naive users or may be too cumbersome for

sophisticated users. Each user has his own preferred way of specifying a query, and the

user interface should allow different ways of specifying the same query as much as

possible.

Incremental query specification would also appeal to the wide range of users.

Rather than writing the specification for a complete query and executing it, GLAD DMC

users can retrieve the result of the complete query in a piece-by-piece, incremental

manner. A user formulate the complete query by first (mentally) decomposing the query

into smaller subqueries. After specifying each subquery correctly, he combines them to

9

www.manaraa.com

retrieve the result for the complete query. In this way. a user can formulate a complex

query in an expedient manner with very few errors. A sample session in the following

section will illustrate the sequence of incremental querying.

The ability to browse the result also improves the ease of use. The result may

actually contain more than what a user really wanted. Instead of reformulating the

query, the user can simply browse through the result and get information. If the user

wants to save the desired result, then he can delete the unwanted records while browsing

through the retrieved result.

3. Sample Session

We now illustrate the features of GLAD by going through a sample session.

Specifically, we show how the user can retrieve the answer to "List all classes that deal

with the subject of probability and that are taken this quarter (Fall '85) by the students

who are majoring in Computer Science and whose gpa's are better than 3.5."

Figure 3.1 is the GLAD diagram for a university database schema. Figure 3.2a

shows the hierarchical structure of GLAD commands. Associated with each command is

a positive integer which corresponds to the function key number. A user can select the

command either by using the mouse, by pressing the corresponding function key, or by

typing the operation name. The top level menu is shown in Figure 3.2b. The menu will

be placed on one part of a screen.'

To get the answer to the query, the user enters the QUERY mode by selecting the

QUERY command from the second level menu. The third level menu is now displayed

on the screen. He decomposes the query into two part: one that lists all courses that deal

6Not all commands are shown here and some of the commands shown here will not be discussed in this paper.

7Exact position is not determined yet. We anticipate to position it either on the top or on the right hand side of a screen.

10

www.manaraa.com

with probability and another that lists all classes taken in the Fall 55 quarter by the

Computer Science students whose gpa's are better than 3.5.
8 The user SPECIFYs the

subject, see Figure 3.3. the course, see Figure 3.4, and the line connecting the two to get

the result of the first subquery. An alternative method, where the user specifies every

condition within the course object, is shown in Figure 3.5. The subject column is

appended to the course object when the user selects the SHOW CONNECTED OBJECT

command.

To actually get(retrieve) this intermediate result, the user issues the CREATE

RESULT command, see Figure 3.6. Notice that the result icon and the subject and

course objects are shaded identically. He can now request SHOW RESULT to verify

that the intermediate result is what he wants. Similar to the LIST MEMBER

command, the SHOW RESULT command will allow users to browse the intermediate

result. The SHOW RESULT command gives an immediate feedback to users enabling

the early detection of erroneous query specification. As users become more proficient,

they can bypass the SHOW RESULT command. Having these two separate commands,

GLAD can help naive users (if asked) by providing an immediate feedback, but it will

not force such help on sophisticated users. By going through a similar query

specification, the user creates the result for the second subquery, see Figure 3.7.

When a user formulates many subqueries. he may forget what the (sub) results were

about. He may prompt GLAD to describe them. For example, the description of

contains class information where

dept.name = 'Computer Science' and

student.gpa > 3.5

.will appear under result 2 if the user requests to DESCRIBE result 2. A user may

change the environment by executing the SETUP command so the description of a result

11

www.manaraa.com

is displayed automatically.

Finally, the user retrieves the complete answer by combining two (sub) results by

executing the COMBINE RESULTS command, see Figure 3.8. and selecting the

association between them. If the user desires to have a permanent copy of the answer,

he can save the answer by selecting SAVE RESULT.

4. Representation and Manipulation of Generalized/ Specialized Objects

In this section, we describe the graphical representations for different types of

generalized/specialized objects. We start with some definitions. Let G be a generalized

object and T(G) = { SVS2 ,
•• ,Sn } where each S, = { S

t
,S

t
,

• ,5, }. 5, is called
1 2 tn

category and S
t

specialized object of G in category Sr For example, we may have

r(employee) =
{ {engineering, business}, {faculty, secretary, technician}, {male, female} }

for an employee object.

In [WU85], the following assumptions, or conditions, are made:

(a) ^ n ^ 1 (note: n = means G is not a generalized object)

(b) 5, p| 5,.

=
<t> for j ^ k, 1 ^ i ^ n, 1 ^ j,k ^ m

m

(c) u 5 . = G for 1 ^ i ^ n.

; = i

The above assumptions are made to simplify the preliminary design of GLAD DMC.

The first assumption says that an object can have at most one category. The second and

third assumptions together say that when an object has a category, a member of the

(generalized) object must be a member of exactly one specialized object. Above

8He may, of course, decompose in other ways.

12

www.manaraa.com

r I employee) violates condition (a). Suppose an employee can be a faculty and a

technician at the same time, then it violates condition (b). And suppose there is an

employee who is not a faculty, secretary, or technician (say. he is an administrator), then

it violates condition (c).

In the following, we show how these assumptions can be removed and yet have

elegant and effective graphical representations of generalized/specialized objects.

4.1. Specialization in more than one category

One possible way to graphically represent T (employee) given above is shown in

Figure 4.1. This method of showing all specialized objects in every category is not

acceptable in the following accounts: (1) it cannot be extended nicely to handle the

situation where the other two conditions are removed, (2) it contradicts our general

philosophy of good user interface, which is to show the minimal amount of information

(i. e. highest level of abstraction) initially and to show the detail only when requested by

users, (3) it becomes unwieldy when the number of categories is large, and (4) it does not

lend itself to a easy formulation of query which involves more than one category.

The method we adopt here is based on the fact that specialized objects inherit all

attributes of the generalized object. When a user request to expand the generalized

object G, which has more than one category, GLAD DMC will prompt the user to select

which category to expand. When a user issue the EXPAND operation on the employee

object described above, a pop-up menu will appear on the screen as shown in Figure 4.2.

A user has an option of expanding the employee object in any one of the categories

listed. If a user selects the job category, then the screen will show the employee object

expanded along the job category, see Figure 4.3. Since the specialized objects inherit

attributes from the generalized object, faculty, secretary, and technician objects all have

two categories, i.e. sex and school categories. So, if a user requests to EXPAND the

13

www.manaraa.com

secretary object in Figure 4.3. then the situation shown in Figure 4.4 will result. Notice

that with this method, users have a wide variety of expanding a generalized object: they

expand the object in a way that fits most naturally to a query that they are formulating.

4.2. Specialized objects are not disjoint

When specialized objects are not disjoint, then there is a member i of G such that

i c S- for more than one i. In other words, specialized objects overlap (if we view object

as a set). Figure 4.5 depicts the situation where there exists a member x of G such that

xeS
l
and xtS

2
. Notice that the LIST MEMBER operation executed on S

t
and on the

overlapped region of 5, and 5
2
will result differently. Examples in Figure 4.6 show the

versatility of this approach.

4.3. Union of specialized objects is not equal to a generalized object

m

If (j 5- ^ £• then there is a member x of G such that x is not a member of any of S
t

.

This situation is graphically depicted by creating a unnamed rectangle, see Figure 4.7.

This unnamed rectangle clearly shows that there is a member who does not belong to

any specialized object. This approach fits perfectly with other solutions given in two

previous subsections and the overall design of GLAD DMC.

5. Representation and Manipulation of Recursively Related Objects

We call an object recursively related if there is an association between the members

of the same object, and such association is called recursive. For example, there may be

associations such as "married" and "parent-of" between the members of the people

object. Recursively related objects are graphically represented as a repeated rectangle,

see Figure 5.1. Notice that in Figure 5.1. there are two associations on the people object,

14

www.manaraa.com

and they are not labelled. Associations are not labelled in a GLAD diagram even if

there are more than one association between the same objects. Then, how does a user

know which association is which?

Automatic labelling of associations will cause the cluttering of a screen and

therefore, we decided not to label them. 9 Normally there is only one association between

objects, and once a user asks GLAD to EXPAND it (or DESCRIBE it if more detailed

explanation is desired), he can usually remember its meaning for the duration of a on-

line session. However, if a user is a very forgetful person, he may end up asking GLAD

repeatedly for the expansion of the same association. Also, if there are more than one

association between objects, it may be difficult to keep track of which association is

which. To aid users in these situations, GLAD DMC allows users to label associations

(in fact, they can label almost anything in a GLAD diagram). So there are two levels of

flexibility. First, a user has a choice of labelling an association or not. And second, he

can label it any way he wants to once he decides to label it. He can use a word(s) that

helps him remember the semantic of an association best. This' may be viewed as a

another form of semantic relativism.

The method for the manipulation of recursively related objects in GLAD is

modelled after G-WHIZ [HEIL85]. We modified their method so that it integrates nicely

into the GLAD framework. Recursive query is formulated in GLAD DMC by specifying

the beginning (root) member of the hierarchy, the direction and depth of the traversal.

and the regular attribute qualifications. For example, to list the grandfathers of

'Walter', a user puts the specification as shown in Figure 5.2a and then selects the

appropriate recursive association (in this case, it is parent-of). The term BU3 in Figure

5.2a stands for Begin hierarchy Upward for S levels. The downward traversal for n levels

9By default, there is no label; but users can change this default so a label always appears on a screen.

''Expanding a recursively related object from one starting point will end up in a hierarchy of members.

15

www.manaraa.com

is expressed as BDd. The BU operation is unique to GLAD: in G-WHIZ. only BD is

available. The specification "Walter" under the name column states that the traversal

begins from 'Walter*. The END specification under the sex column states that the

condition "=male" applies to the members in the last (i.e. end) level of the hierarchy.

The END specification under the people column states that only the members in the last

level of the hierarchy are to be retrieved. The other two options are BEG and ALL.

These options are used to specify the stated conditions are applied to the members of

which levels of a hierarchy. The specification in Figure 5.2b retrieves all grandfathers of

the person named Tat" who is a female. When the desgination of which members that

the stated conditions are applied to becomes more complex, then the PATH option is

used. The value of PATH designates the specific member of a hierarchy. For example,

PATH = 2.1 of designates the first member at the level 3 who is a parent of the second

member at the level 2. If the hierarchy is an ordered tree, and the first member is father,

while the second is mother, then the member at PATH = 2.1 is Walter's maternal

grandfather.

6. Program Box

It is helpful to have program control structures to formulate a complex query,

because it may not be possible to specify some complex queries just by the features of

the GLAD DMC discussed so far. To provide a further assistance to users in formulating

a complex query, GLAD supports the feature called program box. It is an extension of

the condition box employed in the QBE system. A program box is a window on a

screen, where a complex query is formulated by combining the control structures and the

results obtained through the normal GLAD DMC interaction.

We use the query "list all companies located in San Diego where three generations

of a family all work for" as an elucidative example of using a program box. The result 1

16

www.manaraa.com

and result.2 boxes in Figure 6.1 are. respectively, for a father and grandfather of

person, where person is the variable used in the query formulation. The query

formulations for these results are specified similarly as those described in the previous

section, except that here the variable is used. The user attaches more meaningful names

fatherOf and grandfatherOf to the result 1 and result 2 boxes by executing the

LABEL command. The program box is invoked by the PROGRAM BOX command,

and the query is specified as shown in Figure 6.2. A program box will be placed either

on top of GLAD diagram as a separate window or on the side of GLAD diagram; if

possible, the system will always put the program box on the side of GLAD diagram for

better visibility. Notice that the functional notation similar to DAPLEX [SHIP81] is

used. Also, notice that the list of control structures is provided. 11
Instead of actually

typing in the whole program, a user can also create it by copying the result boxes and

objects into the program box.

Here we treated a program box strictly as an added database accessing tool. But it

is also a tool for program development interaction, because a user can create an

application program by using a program box. So there is actually no clear distinction

between program development interaction and data manipulation interaction in GLAD,

which is exactly what we have hoped for. In other words, the GLAD DMC with a

program box capability serves the dual role of query language and embedded host

language. Data definition interaction via GLAD, moreover, is essentially a creation of

database schema by arranging graphical objects such as rectangles, lines, and circle and

specifying their associations, attributes, and integrity contraints. Therefore, in GLAD,

all three user interactions have a consistent, unified interface method.

'Not all choices are shown in the figure.

17

www.manaraa.com

7. Conclusion

We have presented in this paper a motivation behind a unified interface method for

interactions with a database. And we have proposed a graphics user interface GLAD as

an ideal candidate for such unified database interface method. We believe the GLAD's

coherent interface method with its high degree of descriptiveness, ease of learning and

using, and power will appeal to both sophisticated and naive users.

The result we have presented here is an outgrowth of the work reported in [WU85].

We originally viewed a graphical interface is suitable only for data manipulation. But

we soon realized, after we reported our preliminary design of a graphical interface for

accessing a database in [WU85]. that our approach can be extended to the other two

user interactions. Our work on data definition and program development interactions

will be reported in forthcoming papers.

We have already initiated an implementation effort using the ISI workstations with

graphics terminals. We anticipate that the kernel portion of GLAD DMC with a

program box capability as described here will be implemented within the next six

months. Our implementation goal is to make it portable so that it can be adapted as a

front-end for any DBMS without much conversion effort.

Since there are too many areas of possible future research for GLAD, we shall

mention here only some of those which are directly related to the subjects discussed in

this paper. First is the representation and manipulation of an object which is a

specialization of more than one generalized object. A work-study student object, for

example, is a specialized object of both employee and student objects. We would like to

add an elegant graphical representation of an inter-specialized object to a GLAD

diagram. Second is the representation and manipulation of a generalized/specialized

association such as a parent-of association which can be viewed as a generalized

18

www.manaraa.com

association of father-of and mother-of associations. Just as we have a

generalized/specialized object, it may be superior (as far as data modelling is concerned)

to have a generalized/specialized association. And last is the graphical, syntax-directed

program box. Instead of a user invoking a program box and typing in a program, we

would like to have a user creates a program by utilizing a graphical, syntax-directed

editor. With this editor, icons for the control structures are provided and a user creates

a program by arranging these icons in a program box. We believe a technique similar to

the one reported in [GLIN84] can be employed for this purpose.

19

www.manaraa.com

References

[BRAG84] Gragger, R. P. , Dudler. A.. Refsamen. J.. Zehnder. C. A.. Gambit: An
interactive database design tool for data structures, integrity constraints and

transactions. In Proceedings of IEEE International Conference on Data

Engineering (Los Angeles, 1984), 399-407.

[BOGU84] Boguraev, B. K. and Jones, K. S. A natural language front-end to data

bases with evaluative feedback. In New Applications of Databases,

Gardarin, G. and Gelenbe, E., Eds., Academic Press, London, 1984, 159-

182.

[CODD74] Codd, E. F. Seven steps to RENDEZVOUS with the casual user. In

Proceedings IFIP TC-2 Working Conference on Data Base Management

Systems, North-Holland Publishing Co., Amsterdam, 1974, 179-200.

[GLIN84] Glinert. E. P. and Tanimoto, S. L. Pict: An interactive graphical

programming environment. IEEE Computer. Vol 17, No 11, (Nov 1984), 7-

25.

[HEIL85] Heiler, S. and Rosenthal, A. G-WHIZ, a visual interface for the functional

model with recursion. In Proceedings of 11th Conference on Very Large

Data Bases, (Stockholm. 1985), 209-218.

[HEND77] Hendrix. G. G. Human engineering for applied natural language processing.

In Proceedings of Fifth International Joint Conference on Artificial

Intelligence, (Cambridge, 1977, 183-191.

[HERO80] Herot, C. F. Spatial management of data. ACM Transactions on Database

Systems. Vol 5, No 4 (Dec. 1980), 493-514.

[KORT84] Korth, H. F.. Kuper. G. M.. Feigenbaum, J., van Gelder, A., and Ullman. J.

D. System/U: A database system based on the universal relation

assumption. ACM Transactions on Database Systems. Vol 9, No 3 (Sept.

1984),331-347.

[LARS84] Larson, J. A. The forms pattern language. In Proceedings of IEEE
International Conference on Data Engineering (Los Angeles. 1984), 183-191.

[MACG85] MacGregor, R. M. ARIEL -- a semantic front-end to relational DBMSs. In

Proceedings of 11th Conference on Very Large Data Bases, (Stockholm,

1985), 305-315.

20

www.manaraa.com

[MCD074J McDonald. X. and Stonebraker. M. CUPID - the friendly query language.

Memo ERL-M487. ERL. University of California. Berkeley. CA. October.

1974.

[PETR76] Petrick, S. R. On natural language based computer systems. IBM Journal

on Research Developments. Vol 20, No 4 (July, 1976), 314-325.

[HEIL85] Rowe, L. A. "Fill-in-the-Form" programming. In Proceedings of 11th

Conference on Very Large Data Bases, (Stockholm, 1985), 394-404.

[SHIP81] Shipman, D. W. The functional data model and the data language

DAPLEX. ACM Transactions on Database Systems. Vol 6, No 1 (March,

1981), 140-173.

[STON82] Stonebraker, M. and Kalash. J. TIMBER: a sophicticated relation browser.

In Proceedings of 8th Conference on Very Large Data Bases (Mexico City,

1982), 1-10.

[SUGI84] Sugihara, K., Miyao. J., Kikuno. T. and Yoshida, N. A semantic approach

to usability in relational database systems. In Proceedings of IEEE
International Conference on Data Engineering (Los Angeles, 1984), 203-210.

[THOM75] Thomas, J. C. and Gould, J. D. A psychological study of query by example.

In Proceedings of the National Computer Conference 44, (1975), 439-445.

[WALT78] Waltz, D. L. An english language question answering system for a large

relational database. Communications of ACM. Vol 21, No 7 (July, 1978),

526-539.

[WONG82] Wong, H. K. T. and Kuo, I. GUIDE: graphical user interface for database

exploration. In Proceedings of 8th Conference on Very Large Data Bases

(Mexico City, 1982), 22-32.

[WU85] Wu, C. T. A graphical user interface for accessing a database. Submitted

for publication.

[ZL0077] Zloof, M. M. Query-by-example: a data base language. IBM Systems Journal

, 4 (Dec. 1977), 324-343.

21

www.manaraa.com

student student name address ssno gpa

a) student object b) expanded object

student dept

c) association between

dept and student objects

FIGURE 2 1

employee
employee

faculty secretary technician

a) generalized object b) expanded generalized object

FIGURE 2 2

Either i) sub-object of A is related to B or

ii) sub-object of B is related to A or

iii) sub-object of A is related to 3ub-object of B.

If a user is interested in this relation, he can either

expand A and/or B, or prompt GLAD to describe the

relationship between A and B. This is a very important

point; GLAD only provides more information when asked,

it will not force information on a user.

FIGURE 2.3

www.manaraa.com

Disjunctive relation; above shows that an

equipment either belongs to a school or a dept

FIGURE 2 4

subject topic name

Anthropology

Aristotle

Archaeology

Astronomy

Biology

Buddhism

Calculus

z
course

ZS

ECa

Listing members of subject object

FIGURE 2.5

www.manaraa.com

University Database

FIGURE 3.1

www.manaraa.com

OPEN CLOSE EXPLORE SETUP HELP QUIT

DESCRIBE QUERY UPDATE PRINT EXPAND LIST HELP QUIT

MEMBER

3AVE SHOW CLEAR CREATE COPY COMBINE

RESULT RESULT RESULT RESULT RESULT RESULT

SPECIFY HELP QUIT

DESCRIBE

a) Hierarchical structure of commands

3 4

OPEN CLOSE EXPLORE SETUP HELP QUIT

b) Top level menu

FIGURE 3.2

www.manaraa.com

school

subject topic name

Probability

course

project class

Specifying the desired topic probability

FIGURE 3.3

www.manaraa.com

school

subject topic name

Probability

course c_no title credit

G.

Request to retrieve (6.) all information on course
is made in the course object skeleton

FIGURE 3.4

www.manaraa.com

Alternate method to specify the first subquery

FIGURE 3.5

www.manaraa.com

school

employee

project class

RESULT 1

Result of the first subquery is created

FIGURE 3.6

www.manaraa.com

school

employee student
it

project

course |

I class
I I 1 I I I

,,,........
>1 j.T I !fc

J
RESULT 7

j

+"T T
I RESULT 2 -

V • ::::; J ':: :?

Result of the second subquery is added

FIGURE 3.7

www.manaraa.com

school

employee

project

RESULT i

Result of the complete query is now created

FIGURE 3.8

www.manaraa.com

engineering business

faculty secretary technician

male female

One possible way to represent

specializations in more than one category

FIGURE 4 1

categories
employee

SCHOOL
JOB
SEX

A pop-up menu for specialization categories

FIGURE 4.2

faculty secretary technician

An employee object expanded along

the job category

FIGURE 4.3

www.manaraa.com

categories

faculty . jejcreftriy. .
technician SCHOOL

SEX

After a user requested to EXPAND the

secretary object

FIGURE 4.4

S
1

s
2

s
3

Specialized objects S and S are not disjoint

FIGURE 4.5

Si s2

S
3

s
1

s
2

s
3

a) all three overlaps b) No overlap between S and S
1 2

Overlapping of specialized objects

FIGURE 4.6

S
1

s
2

Unnamed rectangle signifies that there is an element

that does not belong to S and Sy
1 2

FIGURE 4.7

www.manaraa.com

Q Q
people

The people object is repeated to denote that

it is a recursively related object. There are

two recursive associations.

FIGURE 5 1

company n>.

people name sex
a a a

END G. BU3
- Walter

END
male

I

a) Retrieval of Walter's grandfathers

company
/—

N

people name sex
a a

END G. BU3
= Pat

END
= male

BEG
=female

i

b) Retrieval of (female) Pat's grandfathers

FIGURE 5.2

www.manaraa.com

company

\ people

-

ESSSSSS^

\\

£^m ^^
\result1
x x
S (person) \^^^ b^^
fatherOf

\resu1t2 \

S (person) \

grondfatherOf

FIGURE 6.1

PROGRAM BOX

LOOP FOR ALL x IN people

IF company(x) =

company(father(x)) =

company(grandfather(x)

)

ANDlocation(company) =

San Diego"

THEN

PRINT company(x)

pLOOP

IF IF

1

THEN THEN ELSE

Program for listing all companies in San Diego

where three generations of a family work

FIGURE 6.2

www.manaraa.com

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2

Code 0142
Naval Postgraduate School
Monterey, CA 93943-5000

Office of Research Administration 1

Code 012
Naval Postgraduate School
Monterey, CA 93943-5000

C. Thomas Wu 20

Code 52Wq
Computer Science Department
Monterey, CA 93943-5000

Chief of Naval Research 1

Arlington, VA 22217

www.manaraa.com

www.manaraa.com

^Et?fY KN0X LIBRARY

3 2768 00347477 6

